Investigation and Mitigation of Temporary Overvoltage Caused by De-Energization on an Offshore Wind Farm

Author:

Akinrinde AjibolaORCID,Swanson AndrewORCID,Davidson InnocentORCID

Abstract

The Ferranti effect could cause a rise in voltage along the cables on a wind farm if the circuit breakers at the receiving ends are switched off. Ferroresonance could also occur due to stuck pole(s) of the circuit breaker during de-energization. This paper reports on the temporary overvoltage (TOV) arising from the de-energization of the circuit breaker connecting the wind turbine to the feeder, the feeder breaker connecting an array of wind turbines to the point of common coupling (PCC), and the opening of the circuit breaker connecting the onshore to the offshore substation. Ferroresonance was characterized using a phase plane diagram and Poincaré map and was identified to be chaotic. The effect of the nonlinear characteristic of the wind transformer core on the ferroresonant overvoltage was examined and increased with the steepness of slope of the transformer curve. A damping resistor, shunt reactor and surge arrester were used to mitigate the overvoltage experienced during the ferroresonant event. The damping resistor was able to reduce the overvoltage to 1.24 P.U. and damped the ferroresonance from chaotic to fundamental mode.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference27 articles.

1. Insulation Co-ordination-Part1: Definitions, Principles and Rules,2006

2. IEEE Draft Guide for the Application of Neutral Grounding in Electrical Utility Systems, Part IV—Distribution,2014

3. 2014 Marked a Record Year for Global Wind Power 2013http://www.gwec.net/global-figures/wind-energy-global-status/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3