Function Estimation in Inverse Heat Transfer Problems Based on Parameter Estimation Approach

Author:

Mohebbi FarzadORCID

Abstract

A new sensitivity analysis scheme is presented based on explicit expressions for sensitivity coefficients to estimate timewise varying heat flux in heat conduction problems over irregular geometries using the transient readings of a single sensor. There is no prior information available on the functional form of the unknown heat flux; hence, the inverse problem is regarded as a function estimation problem and sensitivity and adjoint problems are involved in the solution of the inverse problem to recover the unknown heat flux. However, using the proposed sensitivity analysis scheme, one can compute all sensitivity coefficients explicitly in only one direct problem solution at each iteration without the need for solving the sensitivity and adjoint problems. In other words, the functional form of the unknown heat flux can be numerically estimated by using the parameter estimation approach. In this method, the irregular shape of heat-conducting body is meshed using the boundary-fitted grid generation (elliptic) method. Explicit expressions are given to compute the sensitivity coefficients efficiently and the steepest-descent method is used as the minimization method to minimize the objective function and reach the solution. Three test cases are presented to confirm the accuracy and efficiency of the proposed inverse analysis.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference14 articles.

1. Inverse Heat Conduction: Ill-Posed Problems;Beck,1985

2. Inverse Heat Transfer: Fundamentals and Applications;Özisik,2000

3. Inverse Heat Transfer Problems;Alifanov,1994

4. A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method

5. An inverse analysis for determination of space-dependent heat flux in heat conduction problems in the presence of variable thermal conductivity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3