Rooftop Photovoltaic Energy Production Estimations in India Using Remotely Sensed Data and Methods

Author:

Kumar Anil1,Kosmopoulos Panagiotis2ORCID,Kashyap Yashwant1ORCID,Gautam Rupam3

Affiliation:

1. Electrical and Electronics Engineering Department, National Institute of Technology Karnataka, Surathkal 575025, India

2. Institute of Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), 15236 Athens, Greece

3. CleanMax Solar Energy Solutions Ltd., Gurugram 122009, India

Abstract

We investigate the possibility of estimating global horizontal irradiance (GHI) in parallel to photovoltaic (PV) power production in India using a radiative transfer model (RTM) called libRadtran fed with satellite information on the cloud and aerosol conditions. For the assessment of PV energy production, we exploited one year’s (January–December 2018) ground-based real-time measurements of solar irradiation GHI via silicon irradiance sensors (Si sensor), along with cloud optical thickness (COT). The data used in this method was taken from two different sources, which are EUMETSAT’s Meteosat Second Generation (MSG) and aerosol optical depth (AOD) from Copernicus Atmospheric Monitoring Services (CAMS). The COT and AOD are used as the main input parameters to the RTM along with other ones (such as solar zenith angle, Ångström exponent, single scattering albedo, etc.) in order to simulate the GHI under all sky, clear (no clouds), and clear-clean (no clouds and no aerosols) conditions. This enabled us to quantify the cloud modification factor (CMF) and aerosol modification factor (AMF), respectively. Subsequently, the whole simulation is compared with the actual recorded data at four solar power plants, i.e., Kazaria Thanagazi, Kazaria Ceramics, Chopanki, and Bhiwadi in the Alwar district of Rajasthan state, India. The maximum monthly average attenuation due to the clouds and aerosols are 24.4% and 11.3%, respectively. The energy and economic impact of clouds and aerosols are presented in terms of energy loss (EL) and financial loss (FL). We found that the maximum EL in the year 2018 due to clouds and aerosols were 458 kWh m−2 and 230 kWh m−2, respectively, observed at Thanagazi location. The results of this study highlight the capabilities of Earth observations (EO), in terms not only of accuracy but also resolution, in precise quantification of atmospheric effect parameters. Simulations of PV energy production using EO data and techniques are therefore useful for real-time estimates of PV energy outputs and can improve energy management and production inspection. Success in such important venture, energy management, and production inspections will become much easier and more effective.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference56 articles.

1. A review of renewable energy sources, sustainability issues and climate change mitigation;Owusu;Cogent Eng.,2016

2. The role of renewable energy in the global energy transformation;Gielen;Energy Strateg. Rev.,2019

3. Renewable energy for sustainable development in India: Current status, future prospects, challenges, employment, and investment opportunities;Majid;Energy Sustain. Soc.,2020

4. CO2 emission reduction potential assessment using renewable energy in India;Kumar;Energy,2016

5. Effective Use of Renewable Energies for Greenhouse Heating;Zabeltitz;Renew. Energy,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3