Estimation of the Soil Water Content Using the Early Time Signal of Ground-Penetrating Radar in Heterogeneous Soil

Author:

Lu Qi1ORCID,Liu Kexin1,Zeng Zhaofa1,Liu Sixin1ORCID,Li Risheng2,Xia Longfei2,Guo Shilong1,Li Zhilian1

Affiliation:

1. College of Geo-Exploration Science and Technology, Jilin University, 938 Ximinzhu Street, Changchun 130026, China

2. Shaanxi Land Engineering Construction Group Co., Ltd., Xi’an 710075, China

Abstract

Ground-penetrating radar (GPR) is an important tool for measuring soil water content (SWC) at the field scale. The amplitude analysis of the early time signal (ETS) of GPR may provide a rapid way to estimate SWC. By assuming a homogeneous medium, various studies have been conducted on the relationship between the amplitude of ETS and the topsoil layer’s electromagnetic parameters (dielectric permittivity and conductivity) through numerical simulations, laboratory experiments, and field experiments. Soil is a typical inhomogeneous medium, and soil cultivation is a factor affecting its heterogeneity. In this context, we discuss the ability of the amplitude of ETS to estimate the water content of heterogeneous soil. First, we establish a multi-scale stochastic medium model with the inhomogeneous distribution of dielectric permittivity and conductivity and simulate the GPR response by the finite-difference time-domain (FDTD) method to observe the influence of medium heterogeneity on the GPR response. The heterogeneity of the soil models is evaluated by a geostatistical analysis described by two parameters, correlation length and variability. Then, we analyze the relationship between variability and the average envelope amplitude (AEA) of ETS. A strong soil heterogeneity increases the error of the AEA method in estimating SWC. Finally, the AEA method is used to estimate the SWC of two adjacent fields with different heterogeneities, which were caused by different cultivation methods. The results of the numerical simulation and field experiment indicate that the soil heterogeneity can have an impact on the estimation of SWC using EST, with an error lower than 3% within a depth range of 1/2 λ to λ (wavelength). This suggests that the EST of GPR can be applied to soil layers with relatively large lateral changes in water content.

Funder

Natural Science Foundation of China

Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd.

Xi’an Jiaotong University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3