Kalman Filter, ANN-MLP, LSTM and ACO Methods Showing Anomalous GPS-TEC Variations Concerning Turkey’s Powerful Earthquake (6 February 2023)

Author:

Akhoondzadeh Mehdi1ORCID

Affiliation:

1. Photogrammetry and Remote Sensing Department, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, North Amirabad Ave., Tehran 1417614411, Iran

Abstract

On 6 February 2023, at 1:17:34 UTC, a powerful Mw = 7.8 earthquake shook parts of Turkey and Syria. Investigating the behavior of different earthquake precursors around the time and location of this earthquake can facilitate the creation of an earthquake early warning system in the future. Total electron content (TEC) obtained from the measurements of GPS satellites is one of the ionospheric precursors, which in many cases has shown prominent anomalies before the occurrence of strong earthquakes. In this study, five classical and intelligent anomaly detection algorithms, including median, Kalman filter, artificial neural network (ANN)-multilayer perceptron (MLP), long short-term memory (LSTM), and ant colony optimization (ACO), have been used to detect seismo-anomalies in the time series of TEC changes in a period of about 4 months, from 1 November 2022 to 17 February 2023. All these algorithms show outstanding anomalies in the period of 10 days before the earthquake. The median method shows clear TEC anomalies in 1, 2 and, 3 days before the event. Since the behavior of the time series of a TEC parameter is complex and nonlinear, by implementing the Kalman filter method, pre-seismic anomalies were observed in 1, 2, 3, 5, and 10 days prior to the main shock. ANN as an intelligent-method-based machine learning also emphasizes the abnormal behavior of the TEC parameter in 1, 2, 3, 6, and 10 days before the earthquake. As a deep-learning-based predictor, LSTM indicates that the TEC value in the 10 days prior to the event has crossed the defined permissible limits. As an optimization algorithm, the ACO method shows behavior similar to Kalman filter and MLP algorithms by detecting anomalies 3, 7, and 10 days before the earthquake. In a previous paper, the author showed the findings of implementing a fuzzy inference system (FIS), indicating that the magnitude of the mentioned powerful earthquake could be predicted during about 9 to 1 day prior to the event. The results of this study also confirm the findings of another study. Therefore, considering that different lithosphere–atmosphere–ionosphere (LAI) precursors and different predictors show abnormal behavior in the time period before the occurrence of large earthquakes, the necessity of creating an earthquake early warning system based on intelligent monitoring of different precursors in earthquake-prone areas is emphasized.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3