Monitoring Urban Change in Conflict from the Perspective of Optical and SAR Satellites: The Case of Mariupol, a City in the Conflict between RUS and UKR

Author:

Huang Qihao1,Jin Guowang1,Xiong Xin1,Ye Hao1,Xie Yuzhi2

Affiliation:

1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China

2. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China

Abstract

Modern armed conflicts can cause serious humanitarian disasters, and remote sensing technology is critical in monitoring war crimes and assessing post-war damage. In this study, a constrained energy minimization algorithm incorporating the feature bands (IFB-CEM) is designed to detect urban burning areas in optical images. Due to the difficulty of obtaining the ground survey data of the battlefield, the dual-polarization normalized coherence index (DPNCI) is designed based on the multi-temporal synthetic aperture radar (SAR) image, and the quantitative inversion and evaluation of the destruction of urban architecture are combined with the public images on the Internet. The results show that the burning area is widely distributed in the armed conflict region, and the distribution is most concentrated around the Azovstal steel and iron works. The burning area reached its peak around 22 March, and its change is consistent with the conflict process in time and space. About 79.2% of the buildings in the city were severely damaged or completely destroyed, and there was a significant correlation with burning exposure. The results of this study show that publicly available medium-resolution remote sensing data and Internet information have the ability to respond quickly to the damage assessment of armed conflict and can provide preliminary reference information for dealing with humanitarian disasters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3