ESarDet: An Efficient SAR Ship Detection Method Based on Context Information and Large Effective Receptive Field

Author:

Zhang Yimin1ORCID,Chen Chuxuan1ORCID,Hu Ronglin1,Yu Yongtao1ORCID

Affiliation:

1. Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, No. 1 Meicheng Road East, Huaian 223003, China

Abstract

Ship detection using synthetic aperture radar (SAR) has been extensively utilized in both the military and civilian fields. On account of complex backgrounds, large scale variations, small-scale targets, and other challenges, it is difficult for current SAR ship detection methods to strike a balance between detection accuracy and computation efficiency. To overcome those challenges, ESarDet, an efficient SAR ship detection method based on contextual information and a large effective receptive field (ERF), is proposed. We introduce the anchor-free object detection method YOLOX-tiny as a baseline model and make several improvements to it. First, CAA-Net, which has a large ERF, is proposed to better merge the contextual and semantic information of ships in SAR images to improve ship detection, particularly for small-scale ships with complex backgrounds. Further, to prevent the loss of semantic information regarding ship targets in SAR images, we redesign a new spatial pyramid pooling network, namely A2SPPF. Finally, in consideration of the challenge posed by the large variation in ship scale in SAR images, we design a novel convolution block, called A2CSPlayer, to enhance the fusion of feature maps from different scales. Extensive experiments are conducted on three publicly available SAR ship datasets, DSSDD, SSDD, and HRSID, to validate the effectiveness of the proposed ESarDet. The experimental results demonstrate that ESarDet has distinct advantages over current state-of-the-art (SOTA) detectors in terms of detection accuracy, generalization capability, computational complexity, and detection speed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3