Comprehensive Ocean Information-Enabled AUV Motion Planning Based on Reinforcement Learning

Author:

Li Yun12ORCID,He Xinqi3ORCID,Lu Zhenkun3,Jing Peiguang4ORCID,Su Yishan4

Affiliation:

1. School of Big Data and Artificial Intelligence, Guangxi University of Finance and Economics, Nanning 530003, China

2. Guangxi Big Data Analysis of Taxation Research Center of Engineering, Nanning 530003, China

3. School of Electronic Information, Guangxi Minzu University, Nanning 530006, China

4. School of Electrical and Information Engineering, Tianjin University, Weijin Road, Tianjin 300072, China

Abstract

Motion planning based on the reinforcement learning algorithms of the autonomous underwater vehicle (AUV) has shown great potential. Motion planning algorithms are primarily utilized for path planning and trajectory-tracking. However, prior studies have been confronted with some limitations. The time-varying ocean current affects algorithmic sampling and AUV motion and then leads to an overestimation error during path planning. In addition, the ocean current makes it easy to fall into local optima during trajectory planning. To address these problems, this paper presents a reinforcement learning-based motion planning algorithm with comprehensive ocean information (RLBMPA-COI). First, we introduce real ocean data to construct a time-varying ocean current motion model. Then, comprehensive ocean information and AUV motion position are introduced, and the objective function is optimized in the state-action value network to reduce overestimation errors. Finally, state transfer and reward functions are designed based on real ocean current data to achieve multi-objective path planning and adaptive event triggering in trajectorytracking to improve robustness and adaptability. The numerical simulation results show that the proposed algorithm has a better path planning ability and a more robust trajectory-tracking effect than those of traditional reinforcement learning algorithms.

Funder

National Natural Science Foundation of China

Doctor Start-Up Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3