Inverse Scattering Series Internal Multiple Attenuation in the Common-Midpoint Domain

Author:

Sun Jian12ORCID,Innanen Kristopher A.2,Niu Zhan23,Eaid Matthew V.24

Affiliation:

1. College of Marine Geosicence, Key Lab of Submarine Geoscience and Prospecting Techniques MOE China, Ocean University of China, Qingdao 266100, China

2. Consortium for Research in Elastic Wave Exploration Seismology (CREWES) Project, Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada

3. McDaniel & Associates, Calgary, AB T2P 1G1, Canada

4. Chevron, Houston, TX 77002, USA

Abstract

Internal multiple prediction remains a high-priority problem in seismic data processing, such as subsurface imaging and quantitative amplitude analysis and inversion, particularly in the common-midpoint (CMP) gathers, which contain multicoverage reflection information of the subsurface. Internal multiples, generated by unknown reflectors in complex environments, can be reconstructed with certain combinations of seismic reflection events using the inverse scattering series internal multiple prediction algorithm, which is usually applied to shot records in source–receiver coordinates. The computational overhead is one of the major challenges limiting the strength of the multidimensional implementation of the prediction algorithm, even in the coupled plane-wave domain. In this paper, we first comprehensively review the plane-wave domain inverse scattering series internal multiple prediction algorithm, and we propose a new scheme of achieving 2D multiple attenuation using a 1.5D prediction algorithm in the CMP domain, which significantly reduces the computational burden. Moreover, we quantify the difference in behavior of the 1.5D prediction algorithm for the shot/receiver and the CMP gathers on tilted strata. Numerical analysis of prediction errors shows that the 1.5D algorithm is more capable of handling dipping generators in the CMP domain than in the shot/receiver gathers, and it is able to predict the accredited traveltimes of internal multiples caused by dipping reflectors with small inclinations. For more complex cases with large inclination, using the 1.5D prediction algorithm, internal multiple predictions fail both in the CMP domain and in the shot/receiver gathers, which require the full 2D prediction algorithm. To attenuate internal multiples in the CMP gathers generated by large-dipping strata, a modified version is proposed based on the full 2D plane-wave domain internal multiple prediction algorithm. The results show that the traveltimes of internal multiples caused by dipping generators seen in the simple benchmark example are correctly predicted in the CMP domain using the modified 2D prediction algorithm.

Funder

China Postdoctoral Science Foundation

Shandong Provincial Nature Science Foundation

CREWES industrial sponsors

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3