Sentinel-1 SAR Images and Deep Learning for Water Body Mapping

Author:

Pech-May Fernando1,Aquino-Santos Raúl2ORCID,Delgadillo-Partida Jorge2

Affiliation:

1. Department of Computer Science, TecNM: Instituto Tecnológico Superior de los Ríos, Balancán 86930, Mexico

2. Universidad Tecnológica de Manzanillo, Las Humedades s/n Col. Salagua, Manzanillo 28869, Mexico

Abstract

Floods occur throughout the world and are becoming increasingly frequent and dangerous. This is due to different factors, among which climate change and land use stand out. In Mexico, they occur every year in different areas. Tabasco is a periodically flooded region, causing losses and negative consequences for the rural, urban, livestock, agricultural, and service industries. Consequently, it is necessary to create strategies to intervene effectively in the affected areas. Different strategies and techniques have been developed to mitigate the damage caused by this phenomenon. Satellite programs provide a large amount of data on the Earth’s surface and geospatial information processing tools useful for environmental and forest monitoring, climate change impacts, risk analysis, and natural disasters. This paper presents a strategy for the classification of flooded areas using satellite images obtained from synthetic aperture radar, as well as the U-Net neural network and ArcGIS platform. The study area is located in Los Rios, a region of Tabasco, Mexico. The results show that U-Net performs well despite the limited number of training samples. As the training data and epochs increase, its precision increases.

Funder

National Technology of Mexico

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference93 articles.

1. Centre for Research on the Epidemiology of Disasters (CRED) (2021). 2021 Disasters in Numbers, CRED. Technical Report.

2. Guha-Sapir, D., Below, R., and Hoyois, P. (2023, March 04). EM-DAT: The CRED/OFDA International Disaster Database. Available online: https://www.emdat.be/.

3. Wallemacq, P., and House, R. (2018). Economic Losses, Poverty and Disasters (1998–2017), Centre for Research on the Epidemiology of Disasters United Nations Office for Disaster Risk Reduction. Technical Report.

4. Paz, J., Jiménez, F., and Sánchez, B. (2018). Urge Manejo del Agua en Tabasco, Universidad Nacional Autónoma de México y Asociación Mexicana de Ciencias para el Desarrollo Regional A.C.. Technical Report.

5. CEPAL (2008). Tabasco: Características e Impacto Socioeconómico de las Inundaciones Provocadas a Finales de Octubre y a Comienzos de Noviembre de 2007 por el Frente Frío Número 4, CEPAL. Technical Report.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3