Abstract
Thermal interface materials (TIMs), typically composed of a polymer matrix with good wetting properties and thermally conductive fillers, are applied to the interfaces of mating components to reduce the interfacial thermal resistance. As a filler material, silver has been extensively studied because of its high intrinsic thermal conductivity. However, the high cost of silver and its toxicity has hindered the wide application of silver-based TIMs. Copper is an earth-abundant element and essential micronutrient for humans. In this paper, we present a copper-based multi-dimensional filler composed of three-dimensional microscale copper flakes, one-dimensional multi-walled carbon nanotubes (MWCNTs), and zero-dimensional copper nanoparticles (Cu NPs) to create a safe and low-cost TIM with a high thermal conductivity. Cu NPs synthesized by microwave irradiation of a precursor solution were bound to MWCNTs and mixed with copper flakes and polyimide matrix to obtain a TIM paste, which was stable even in a high-temperature environment. The cross-plane thermal conductivity of the copper-based TIM was 36 W/m/K. Owing to its high thermal conductivity and low cost, the copper-based TIM could be an industrially useful heat-dissipating material in the future.
Funder
Ministry of Trade, Industry and Energy
Subject
Molecular Biology,Biochemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献