Effect of Coal Blending on Ash Fusibility and Slurryability of Xinjiang Low-Rank Coal

Author:

Li Hui,Song Xiaoling,Li Gang,Kong Lingxue,Li Huaizhu,Bai Jin,Li Wen

Abstract

This work investigated the effect of coal blending on ash fusibility and slurryability of Xinjiang low-rank coal. The results showed that Xinjiang low-rank coals were characterized by high internal water content, high volatile content, high ash fusing point, and poor slurryability, which can not be directly used in coal water slurry gasification. The blending method not only reduced the ash fusibility but also improved the slurryability of these low-rank coals. When the coals with low calcium and high silicon contents (KG and YK) were blended with coal with high calcium content (SH), the ash fusion temperatures of the blended coal were significantly reduced. Moreover, the SH coal showed the worst slurryability performance with a concentration of 48.56%. The slurryability of HS coal can be dramatically improved by blending with KG. When the mass fraction of KG coal reached 70%, the concentration of coal water slurry increased by 11%. For the blended coal of KG and YK, the concentration and stability of coal water slurry gradually increase with the increasing mass ratio of KG. The coal blending method can effectively improve the concentration of coal water slurry for the low-rank coals, which were difficult-to-prepare slurry.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference25 articles.

1. Application status and development prospect of coal water mixture technology in china;Duan;Coal Sci. Technol.,2015

2. Effect of organized assemblies. Part 4. Formulation of highly concentrated coal-water slurry using a natural surfactant;Das;Energy Fuels,2008

3. Experimental Study on the Effect of Particle Size Distribution on the slurryability of Shenhua Coal;Su;Coal Chem. Ind.,2020

4. Three peak fractal grading coal water slurry concentration technology;Zhou;Clean Coal Technol.,2018

5. Improvement of Coal Water Slurry Property through Coal Physicochemical Modifications by Microwave Irradiation and Thermal Heat

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3