Numerical Study for Flow Loss Characteristic of an Axial-Flow Pump as Turbine via Entropy Production Analysis

Author:

Yang Fan,Li Zhongbin,Cai Yiping,Jiang Dongjin,Tang Fangping,Sun Shengjie

Abstract

Low-head vertical axial-flow pump as turbine (PAT) devices play a vital part in the development of clean energy for hydropower in plain areas. The traditional method of evaluating the flow loss in hydraulic machinery is calculated by the pressure drop method, the limitation of which is that the location of the occurrence of large losses cannot be accurately determined. In this paper, entropy production theory is introduced to evaluate the irreversible losses in the axial-flow PAT from the perspective of the second law of thermodynamics. A three-dimensional model of the axial-flow PAT is established and solved numerically using the Reynolds time-averaged equation, and the turbulence model is adopted as Shear Stress Transport–Curvature Correction (SST-CC) model. The validity of the entropy production theory to evaluate the energy loss distribution of the axial-flow PAT is illustrated by comparing the flow loss calculated by the pressure drop and the entropy production theory, respectively. The entropy production by turbulent dissipative dominates the total entropy production in the whole flow conduit, and the turbulent dissipative entropy accounts for the smallest percentage of the whole conduit entropy production at the optimal working condition Qbep, which is 51%. The impeller and the dustpan-shaped conduit are the essential sources of hydraulic loss in the entire flow conduit of the axial-flow PAT, and most of the energy loss of the impeller occurs at the blade leading edge, the trailing edge, and the flow separation zone near the suction surface. The energy loss of the dustpan-shaped conduit results from the high-speed flow from the impeller outlet to dustpan-shaped conduit to form a vortex, backflow and other chaotic flow patterns. Flow impact, flow separation, vortex and backflow are the main causes of high entropy production and energy loss.

Funder

National Natural Science Foundation of China

Major Projects of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3