Synthetic-Gas Production through Chemical Looping Process with Concentrating Solar Dish: Temperature-Distribution Evaluation

Author:

Montà Edoardo,Santarelli Massimo,Papurello DavideORCID

Abstract

The energy crisis and the adaptation of the global energy structure promote the development of renewable energies, in particular solar energy, also for syngas production. In this work, attention was focused on solar devices, necessary to provide high-temperature heat for the reduction reaction of metal oxides involved in the chemical looping driven by solar energy. Thermochemical processes for synthetic-gas production and CO2 sequestration were investigated using a concentrating solar thermal system. This paper proposes a useful forecasting model of the receiver temperature to make a realistic estimate of the system’s producibility for the different periods of the year. The model proposed was validated in the winter season, and the predicted temperature varied below 5% considering the real experimental data (442–472 °C). The validated model was used to evaluate the temperature receiver in spring and in summer, when the thermal level is reliable for thermochemical processes. From the spring season until the completion of the summer season, optimum conditions inside the receiver were reached (above 1000 °C). These preliminary findings could be used for the development of large-scale production systems.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3