Vibration Characteristics Analysis of O-Shaped Damping Ring to Balance Damping Gear Transmission System for Three-Cylinder Engine

Author:

Wang Pingjun,Li Gangyan,Li Xueping

Abstract

Balance shafts are often used to improve the engine vibration characteristics of three-cylinder engines. The balance damping gear with a damping ring is an important part connecting the crankshaft and the balance shaft transmission. The stiffness characteristics of the damping ring and the unbalance of the gear have an important influence on its vibration suppression performance, but the coupled influence of the stiffness characteristics of the damping ring and the unbalanced characteristics of the vibration damping gear is unknown. In this paper, a multi-body dynamic bending–torsional coupling model of the transmission system of a three-cylinder engine with a balance damping gear is constructed considering the equivalent stiffness of the balance shaft support. Based on the fourth-order Runge–Kutta method, the influence laws of different rotational speeds, load torques, gear unbalance, radial stiffness and torsional stiffness of the damping ring on the vibration characteristics of the transmission system are obtained. The results show that the vibration amplitude increases linearly with the increase in the rotational speed and the amount of unbalance. As the load torque increases, the noise radiation of the system increases. The change in the equivalent torsional stiffness of the damping ring has little effect on the radial vibration suppression effect of the gear. As the equivalent radial stiffness of the damping ring increases, the vibration suppression rate decreases linearly. Combined with the calculation formula of damping ring stiffness, when the inner and outer diameters of the damping ring are relatively large, the vibration suppression performance decreases sharply with the increase in the thickness of the damping ring. Therefore, in order to achieve a better vibration attenuation effect, the inner to outer diameter ratio of the damping ring should be given priority in the design of the damping gear. Thus, the thickness of the design can meet the requirements of the vibration attenuation performance and a vibration attenuation of more than 90% of the radial vibration can be achieved. The model of the damping ring size and the vibration suppression effect established based on the method presented in this paper can be used to guide the design of balance damping gears.

Funder

Promote AI technology innovation and industrial application researc

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3