Deep Characterization of Circular RNAs from Human Cardiovascular Cell Models and Cardiac Tissue

Author:

Jakobi TobiasORCID,Siede Dominik,Eschenbach Jessica,Heumüller Andreas W.ORCID,Busch MartinORCID,Nietsch RouvenORCID,Meder BenjaminORCID,Most PatrickORCID,Dimmeler StefanieORCID,Backs JohannesORCID,Katus Hugo A.ORCID,Dieterich ChristophORCID

Abstract

For decades, cardiovascular disease (CVD) has been the leading cause of death throughout most developed countries. Several studies relate RNA splicing, and more recently also circular RNAs (circRNAs), to CVD. CircRNAs originate from linear transcripts and have been shown to exhibit tissue-specific expression profiles. Here, we present an in-depth analysis of sequence, structure, modification, and cardiac circRNA interactions. We used human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs), human healthy and diseased (ischemic cardiomyopathy, dilated cardiomyopathy) cardiac tissue, and human umbilical vein endothelial cells (HUVECs) to profile circRNAs. We identified shared circRNAs across all samples, as well as model-specific circRNA signatures. Based on these circRNAs, we identified 63 positionally conserved and expressed circRNAs in human, pig, and mouse hearts. Furthermore, we found that the sequence of circRNAs can deviate from the sequence derived from the genome sequence, an important factor in assessing potential functions. Integration of additional data yielded evidence for m6A-methylation of circRNAs, potentially linked to translation, as well as, circRNAs overlapping with potential Argonaute 2 binding sites, indicating potential association with the RISC complex. Moreover, we describe, for the first time in cardiac model systems, a sub class of circRNAs containing the start codon of their primary transcript (AUG circRNAs) and observe an enrichment for m6A-methylation for AUG circRNAs.

Funder

Klaus Tschira Stiftung

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3