Numerical Gradient Schemes for Heat Equations Based on the Collocation Polynomial and Hermite Interpolation

Author:

Li Hou-Biao,Song Ming-Yan,Zhong Er-Jie,Gu Xian-MingORCID

Abstract

As is well-known, the advantage of the high-order compact difference scheme (H-OCD) is that it is unconditionally stable and convergent on the order O ( τ 2 + h 4 ) (where τ is the time step size and h is the mesh size), under the maximum norm for a class of nonlinear delay partial differential equations with initial and Dirichlet boundary conditions. In this article, a new numerical gradient scheme based on the collocation polynomial and Hermite interpolation is presented. The convergence order of this kind of method is also O ( τ 2 + h 4 ) under the discrete maximum norm when the spatial step size is twice the one of H-OCD, which accelerates the computational process. In addition, some corresponding analyses are made and the Richardson extrapolation technique is also considered in the time direction. The results of numerical experiments are consistent with the theoretical analysis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference16 articles.

1. Numerical Methods of Differential Equations;Hu,2007

2. Numerical Solutions of Partial Differential Equations;Morton,2006

3. Compact difference schemes for heat equation with Neumann boundary conditions

4. Finite Difference Methods for Partial Difference Equations in Science Computation;Zhang,2006

5. A linearized compact difference scheme for a class of nonlinear delay partial differential equations

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3