Author:
Zhao Yunfeng,Liu Hanlong,Xie Kainan,Salje Ekhard K.H.,Jiang Xiang
Abstract
The acoustic emission, AE, from avalanches of local cracks and microstructural changes of sandstone under confined compression have been reported. These avalanches soften the underlying minerals and play a key role as indicators for the prediction of geo-engineering disasters, such as mining collapses, rock outbursts caused by high ground stress, and man-made quakes by fracking. Compressed sandstone is a model material for the investigation of avalanches. The avalanche energies, amplitudes, and waiting times show the probability distributions that allow us to distinguish between three compression stages; namely, (I) pre-failure, (II) correlated failure, and (III) post-failure. The energy of stage I and stage II is power-law distributed and scale invariant, while post-failure experiments show power laws with high exponential damping (friction). The scaling behavior is close to the predictions of a mean-field (MF) model (stage II) and a force-integrated mean-field model (stage I). Confinement shifts the value of the energy exponent closer to the MF prediction. Omori’s law and waiting time distributions are independent of stress during the compression; their scaling exponents are very similar to those found in seismological studies.
Funder
National Natural Science Foundation of China
EPSRC
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献