Thermal Cyclic Properties of Ti-Pd-Pt-Zr High-Temperature Shape Memory Alloys

Author:

Tasaki WataruORCID,Shimojo MasayukiORCID,Yamabe-Mitarai Yoko

Abstract

In this study, the thermal cyclic properties of Ti-(50-x)Pd-xPt-5Zr alloys (x = 5, 15, 25, at%), comprising B2 and B19 structures in austenite and martensite, were investigated by a thermal cyclic compression test under a constant load of between 15 and 200 MPa. The transformation temperature measured using differential scanning calorimetry increased with increasing Pt concentration. The highest austenite finishing (Af) temperature, 648 °C, was obtained in the Ti-25Pd-25Pt-5Zr alloy. Irrecoverable strain due to thermal cyclic testing was observed during each test, even at a stress of 50 MPa. The work output, calculated as the product of the transformation strain and the applied stress from strain–temperature curves, decreased with increasing Pt concentration. This was because of the lower strength of the austenite phase due to Af increasing with an increase in the concentration of Pt. Although irrecoverable strain was observed with the first thermal cycle test, it decreased after several thermal cyclic tests, which are called training.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3