The Formation and Application of Submicron Spherical BaTiO3 Particles for the Diffusion Layer of Medical Dry Films

Author:

Zhang BaodanORCID,Jin HaiboORCID,Liu XuORCID,Guo Xiaoyan,He GuangxiangORCID,Yang Suohe

Abstract

Submicron spherical barium titanate (BaTiO3) was prepared by batch precipitation in an alkaline solution of a BaCl2–TiCl4–NaOH reaction system. The influence of various parameters on the morphology of BaTiO3 powders was investigated in this study. Spherical BaTiO3 particles can be obtained by reacting for 20 min, which was used to prepare the dry sheet of a medical dry chemical reagent. The morphology of the particles was affected by the stirring speed and the alkaline concentration; the particle size decreased as the stirring speed increased. The hydroxyl ion in the solution acts as a catalyst that can promote the formation of spherical BaTiO3. The formation mechanism of the BaTiO3 sphere is proposed to have three steps: the formation of a Ba–Ti gel and nucleation, self-combination/growth of the BaTiO3 crystal nucleus, and Ostwald ripening. In addition, it is feasible to apply the prepared BaTiO3 sphere to medical dry chemical detection reagents.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3