Abstract
This paper presents a novel magneto-optical isolator based on an ultra-wideband and high efficiency photonic crystals (PCs) waveguide and gyromagnetic ferrites. The three-dimensional numerical simulation finds that the photonic crystals waveguide’s (PCW) transmission efficiency rises with its height and width. The corresponding experiments are performed by using a triangular lattice Al2O3 dielectric posts array in 5G millimeter wave band. The measured transmission efficiency is up to 90.78% for the optimal PCs waveguide structure, which has ultra-wide operating bandwidth from 23.45 to 31.25 GHz. The magneto-optical isolator is designed by inserting two rectangular gyromagnetic ferrites into the PCs waveguide. Due to the contrast between the effective permeability of the left and right circular polarization waves passing through the magnetized ferrite sheets, the ferromagnetic resonance absorption of the forward and reverse waves is different. By using finite element method, the isolation is optimized to be 49.49 dB for the isolator and its relative bandwidth reaches 8.85%. The high isolation, broadband, and easy integration indicate that our designed magneto-optical isolator has significant advantage in 5G communication systems.
Funder
National Natural Science Foundations of China
China Postdoctoral Science Foundation
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献