Fe-Containing Al-Based Alloys: Relationship between Microstructural Evolution and Hardness in an Al-Ni-Fe Alloy

Author:

Faria Jonas12ORCID,de Paula Andrei1,Silva Cássio1ORCID,Kakitani Rafael1ORCID,Barros André1ORCID,Garcia Amauri1,Brito Crystopher3,Cheung Noé1ORCID

Affiliation:

1. Department of Manufacturing and Materials Engineering, University of Campinas—UNICAMP, Campinas 13083-860, SP, Brazil

2. Federal Institute of Education, Science and Technology of São Paulo—IFSP, São João da Boa Vista 13872-551, SP, Brazil

3. Department of Aeronautical Engineering, School of Engineering of São João (FESJ), São Paulo State University—UNESP, São João da Boa Vista 13876-750, SP, Brazil

Abstract

Recycled Al alloys not only offer environmental and economic benefits but also present a valuable base for the development of innovative materials, such as Al-Ni-Fe alloys. This work particularly focuses on the microstructural changes and hardness of an Al-5Ni-1Fe alloy (wt.%) solidified with an approximate 20-fold variation in cooling rates. For the various microstructural length scales obtained, only the eutectic regions exhibit a uniform pattern, with the eutectic colonies comprising an α-Al phase along with Al3Ni and Al9FeNi intermetallic compounds. It is shown that microstructural refinement can lead to a 36% increase in hardness. To represent this mathematically, hardness values are associated with the eutectic colony and intermetallic fiber spacings (λEC and λIF is, respectively) using experimental equations based on the Hall–Petch relationship and multiple linear regression. In addition, comparisons are undertaken with Al-5Ni and Al-1Fe (wt.%) alloy samples produced under the same conditions. The Al-5Ni-1Fe alloy exhibits higher hardness values than both the Al-5Ni and Al-1Fe binary alloys. Furthermore, the hardness of the ternary Al-Ni-Fe alloy is sensitive to microstructural refinement, a characteristic absent in the binary alloys. For λIF−1/2 = 1.56 µm−1/2 (coarser microstructure), the Al-5Ni-1Fe alloy exhibits a hardness of about 13% and 102% higher than that of the Al-5Ni and Al-1Fe alloys, respectively, while for λIF−1/2 = 1.81 µm−1/2 (finer microstructure), it demonstrates a hardness of approximately 39% and 147% higher as compared to that of the Al-5Ni and Al-1Fe alloys, respectively. Thus, this research provides experimental correlations that connect hardness, microstructure, and solidification thermal parameters, contributing to a better understanding for the design of as-cast Fe-contaminated Al-Ni-based alloys.

Funder

FAPESP—São Paulo Research Foundation, Brazil

CNPq-National Council for Scientific and Technological Development–CNPq

CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

FAEPEX/UNICAMP-Fundo de Apoio ao Ensino, à Pesquisa e à Extensão

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3