Investigation on Optical Absorption and Reflection of Carbon Nanotubes Mixed Copper Composites for Laser Sintering Process Improvement

Author:

Ayub Hasan1,Khan Lehar Asip1,McCarthy Eanna1ORCID,Ahad Inam Ul1ORCID,Fleischer Karsten1ORCID,Brabazon Dermot1ORCID

Affiliation:

1. I-Form Advanced Manufacturing Research Centre, School of Mechanical and Manufacturing Engineering, Dublin City University, D09 V209 Dublin, Ireland

Abstract

Selective laser sintering (SLS) of copper components manufactured via powder metallurgy is widely studied due to minimal material wastage. However, copper has poor optical absorption when exposed to infrared (IR) lasers, such as in laser-based additive manufacturing or laser surface processing. To address this issue, an innovative approach to enhance the optical absorption of copper powders during infrared laser sintering is presented in this study. Carbon nanotubes (CNTs) have several unique properties, including their high surface area, plasmonic response, excellent conductivity, and optical absorption properties. CNTs were mixed with copper powders at different weight percentages using an acoustic method. The resulting Cu-CNT compositions were fabricated into pellets. The Box-Behnken Design of Experiments methodology was used to optimize the IR laser processing conditions for sintering. Spectroscopic analysis was conducted to evaluate the reflection and thermal absorption of the IR wavelengths by the Cu-CNT composites. Density and hardness measurements were taken for the laser-sintered Cu-CNT pellets. The coating of copper powders with CNTs demonstrated enhanced optical absorption and correspondingly reduced reflection. Due to the enhanced optical absorption, increased control and sensitivity of the laser sintering process was achieved, which enabled improvement in the mechanical properties of strength, hardness, and density, while also enabling control over the composite thermal expansion coefficient. A maximum average hardness of 66.5 HV was observed. Indentation test results of the samples revealed maximum tangential and radial stresses of 0.148 MPa and 0.058 Mpa, respectively.

Funder

Science Foundation Ireland

European Regional Development Fund

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3