Effect of Al/Mg Ratio on the Microstructure and Phase Distribution of Zn-Al-Mg Coatings

Author:

Zhang Ziyue12,Zhang Jie2,Zhao Xingyuan2,Liu Xin2,Cheng Xuequn1,Jiang Sheming2,Zhang Qifu2

Affiliation:

1. Corrosion & Protection Center, University of Science & Technology Beijing, Beijing 100083, China

2. National Engineering Laboratory of Advanced Coating Technology for Metals, Central Iron & Steel Research Institute, Beijing100081, China

Abstract

In contrast with studies such as those on the effect of a single elemental variable on Zn-Al-Mg coatings, Mg/Al is considered a variable parameter for evaluating the microstructure of Zn-Al-Mg coatings in this work, and the combined effect of the two elements is also taken into account. The Mg/Al ratios in the continuous hot-dip plating of low-alumina Zn-Al-Mg coatings were 0.63, 0.75, 1.00, 1.25, and 1.63. respectively, and the microstructures of the different coatings were observed using scanning electron microscopy (SEM). The surface elemental distributions of the coatings were analyzed with energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) analysis to understand the phase distributions of the coatings, which mainly consisted of a zinc monomeric phase, a binary eutectic phase (Zn/MgZn2), and a ternary eutectic phase (Zn/Al/MgZn2). Statistical calculations of the phase distributions in colored SEM images were performed using ImageJ-win64 software, comparative analysis of the solidification simulation results was carried out with thermodynamic simulation software (PANDAT-2023), and evaluation of the corrosion resistance of the platings was performed using macroscopic cyclic immersion corrosion experiments. The results show that with the increase in the Mg/Al ratio, the binary eutectic phase in the coatings gradually increased, the variation trend of the ternary eutectic phase was not obvious, and the corrosion resistance of the coatings gradually improved.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3