A Simultaneous Design and Optimization Framework for the Reaction and Distillation Sections of Methanol to Olefins Process

Author:

Li Ning,Zhao LiwenORCID,Li Dan,Sun Huifeng,Zhang Di,Liu Guilian

Abstract

The reaction and separation sections are the keys to the methanol-to-olefins (MTO) chemical processes, and they should be optimized to reduce the cost of production. This work develops a framework for the simultaneous design and optimization of the reaction and distillation sections. An optimization model with shortcut and rigorous methods combined is established for distillation columns to improve accuracy and efficiency. With the auxiliary devices and the selection of utilities considered, the reaction and distillation sections are integrated to maximize profits. The genetic algorithm targets the optimal parameters, including the catalyst’s coke content and reaction temperature, each column’s operating pressure, and the allocation of utilities and auxiliary devices. For the studied MTO process, the optimal reaction temperature and catalyst’s coke content were identified to be 496 °C and 7.8%, respectively. The maximum profit is 15.3% greater than that identified with only the separation section optimized, and the minimum total annual cost (TAC) of the separation section is 3.73% less.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3