Abstract
As part of the European Commission research project DIY4U focused on the development of machinery to be installed in supermarket allowing customers to define their customized detergent according to their needs. These machines will mix the detergent components (surfactant, fatty acid, water, perfume, etc.) already in the detergent canister as sold to consumers. To avoid long waiting times for customers, and to obtain a product with good quality and consistency, mixing must be very efficient. A mixing process with rotation and displacement by means of rotating the canister around an axis below the canister bottom has been checked by means of Computational Fluid Dynamics (CFD) tools after validation of one case with lab results. This is a new approach for liquid detergents, as commonly is a powder detergent production process. The mixing process has been simulated for 39 different combinations of components mass fraction percentages and the mixing quality observed during the mixing period. A response surface obtained from these simulations has been developed to be included in a Digital Twin, this being a task within this DIY4U project. The results show that this system is very efficient, taking a few seconds to develop a complete mixing. Also, the mixing time differences are quite small, requiring all customers to wait just few seconds independently of their detergent formulation.
Funder
European Union´s Horizon 2020 research and innovation programme, project DIY4U
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering