Rapid Identification of Insecticide- and Herbicide-Tolerant Genetically Modified Maize Using Mid-Infrared Spectroscopy

Author:

Liu Xiaodan,Yu Yonghui,Bai XiulinORCID,Li Xiaolong,Zhang Jun,Wang Dun

Abstract

Genetically modified (GM) technology is of great significance for increasing crop production, protecting biodiversity, and reducing environmental pollution. However, with the frequent occurrence of safety events regarding GM foods, more and more disputes have arisen over the potential safety of transgenic technology. It is particularly necessary to find a fast and accurate method for transgenic product identification. In this research, mid-infrared spectroscopy, coupled with chemometric methods, was applied to discriminate GM maize from its non-GM parent. A total of 120 GM maize and 120 non-GM maize samples were prepared, and the spectral information in the range of 400–4000 cm−1 was collected. After acquiring the spectra, wavelet transform (WT) was used to preprocess the data, and k-means was carried out to split all samples into calibration and prediction sets in the ratio of 2:1. Principal component analysis (PCA) was then conducted to qualitatively distinguish the two types of samples, and an apparent cluster was observed. Since the full spectrum covered a large amount of data and redundant information, we adopted the successive projections algorithm (SPA) to select optimal wavelengths for further analysis. Chemometrics, including partial least squares-discriminant analysis (PLS-DA), the k-nearest neighbor algorithm (KNN), and the extreme learning machine (ELM), were performed to establish classification models based on full spectra and optimal wavelengths. The overall results indicated that ELM models based on full spectra and optimal spectra showed better accuracy and reliability, with a 100% recognition rate in the calibration set and a 98.75% recognition rate in the prediction set. It has been confirmed that mid-infrared spectroscopy, combined with chemometric methods, can be a novel approach to identify transgenic maize.

Funder

Scientific Research Project of Wuhan Polytechnic University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3