A New Angular Light Scattering Measurement of Particulate Matter Mass Concentration for Homogeneous Spherical Particles

Author:

Chen Dong,Liu Xiaowei,Han Jinke,Jiang Meng,Wang Zhaofeng,Qi Jiuxin

Abstract

Under the condition of ultra-low emission for power plants, the particulate matter concentration is significantly lower than that of typical power plants a decade ago, which posed new challenges for the particulate matter monitoring of stationary emission. The monitoring of particulate matter mass concentration based on ensemble light scattering has been found affected by particle size. Thus, this study develops a method of using the scattering angular distribution to obtain the real-time particle size, and then correct the particulate matter concentration with the real-time measured particle size. In this study, a real-time aerosol concentration and particle size measurement setup is constructed with a fixed detector at the forward direction and a rotating detector. The mass concentration is measured by the fixed detector, and the particle size is measured from the intensity ratio of the two detectors. The simulations show that the particle size has power law functionality with the angular spacing of the ripple structure according to Mie theory. Four quartz aerosols with different particle size are tested during the experiment, and the particle size measured from the ripple width is compared with the mass median size measured by an electrical low pressure impactor (ELPI). Both techniques have the same measurement tendency, and the measurement deviation by the ripple width method compared with ELPI is less than 15%. Finally, the measurement error of the real-time mass concentration is reduced from 38% to 18% with correction of the simultaneously measured particle size when particle size has changed.

Funder

the National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3