Capacitive Power Transfer System with Reduced Voltage Stress and Sensitivity

Author:

Mostafa Tarek,Bui Dai,Muharam Aam,Hattori Reiji,Hu Aiguo

Abstract

This paper introduces a DC–DC buck converter on the secondary side of the capacitive power transfer system to reduce the voltage and electric field across the interface, and to reduce the circuit Q, and thus the system sensitivity. The system is mathematically analyzed to study the improvement in sensitivity and voltage stress. The leakage electric field emissions around the plates are investigated by simulation. The analytical and simulation results show that by reducing the duty cycle of the buck converter at a constant output power, the voltage across the plates can be significantly reduced and the circuit becomes less sensitive to the variations in parameters. Experimental results demonstrated that Q and the voltage stress over the capacitive interface are reduced by changing the duty cycle of the buck converter. For delivering 10 W of power, the maximum voltage stress across one pair of the coupling plates is reduced from 211 V in the conventional system without using a DC–DC converter, to 65 V and 44 V at duty cycles of 30% and 20%, respectively. The system achieves an end-to-end power efficiency of 80% at an output power of 10 W and a duty cycle of 30%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3