Three-Dimensional Printed Resin: Impact of Different Cleaning Protocols on Degree of Conversion and Tensile Bond Strength to a Composite Resin Using Various Adhesive Systems

Author:

Lankes Valerie1,Reymus Marcel2,Mayinger Felicitas1,Coldea Andrea1ORCID,Liebermann Anja3,Hoffmann Moritz1,Stawarczyk Bogna4ORCID

Affiliation:

1. Department of Prosthetic Dentistry, University Hospital, LMU Munich, 80336 Munich, Germany

2. Department of Conservative Dentistry and Peridontology, University Hospital, LMU Munich, 80336 Munich, Germany

3. Head of the Department of Prosthetic Dentistry, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany

4. Scientific Head Dental Material Unit, Department of Prosthetic Dentistry, University Hospital, LMU Munich, 80336 Munich, Germany

Abstract

The present investigation tested the effect of cleaning methods and adhesives on the tensile bond strength (TBS) of a resin-based composite luted to a temporary 3D printed resin. Substrates (n= 360) were printed using a Rapidshape D20II and cleaned with a butyldiglycol-based solution, isopropanol, or by centrifugation. Specimens were air-abraded with Al2O3 (mean particle size 50 µm) at 0.1 MPa followed by pretreatment (n = 30/subgroup) with: (1) Clearfil Ceramic Primer (CCP); (2) Clearfil Universal Bond (CUB); (3) Scotchbond Universal Plus (SUP) or 4. Visio.link (VL) and luted to PanaviaV5. TBS (n = 15/subgroup) was measured initially (24 h at 37 °C water) or after thermal cycling (10,000×, 5/55 °C). The degree of conversion (DC) for each cleaning method was determined prior and after air-abrasion. Univariate ANOVA followed by post-hoc Scheffé test was computed (p < 0.05). Using Ciba-Geigy tables and chi-square, failure types were analyzed. The DC values were >85% after all cleaning methods, with centrifugation showing the lowest. CCP pretreatment exhibited the lowest TBS values, with predominantly adhesive failures. The combination of CCP and centrifugation increased the TBS values (p < 0.001) compared to the chemical cleaning. CUB, SUP, and VL, regardless of cleaning, can increase the bond strength between the 3D printed resin and the conventional luting resin.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3