Sound Quality Performance of Orthogonal Antisymmetric Composite Laminates Embedded with SMA Wires

Author:

Huang Yizhe123,Hu Jiangbo1,Wang Jun1ORCID,Sun Jinfeng1,You Ying1,Huang Qibai2,Xu Enyong23

Affiliation:

1. School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China

2. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

3. Dongfeng Liuzhou Motor Co., Ltd., Liuzhou 545005, China

Abstract

Orthogonal antisymmetric composite laminates embedded with shape memory alloys (SMAs) wires have the potential to improve the sound quality of vibro-acoustics by taking advantage of the special superelasticity, temperature phase transition, and pre-strain characteristics of SMAs. In this research, space discretion and mode decoupling were employed to establish a vibro-acoustic sound quality model of SMA composite laminates. The association between the structural material parameters of SMA composite laminates and the sound quality index is then approached through methodologies. Numerical analysis was implemented to discuss the effects of SMA tensile pre-strain, SMA volume fraction, and the ratio of resin-to-graphite in the matrix on the vibro-acoustic sound quality of SMA composite laminates within a temperature environment. Subsequently, the sound quality test for SMA composite laminates is thus completed. The theoretically predicted value appears to agree well with the experimental outcomes, which validates the accuracy and applicability of the dynamic modeling theory and method for the sound quality of SMA composite laminates. The results indicate that attempting to alter the SMA tensile pre-strain, SMA volume fraction, and matrix material ratio can be used to modify loudness, sharpness, and roughness, which provides new ideas and a theoretical foundation for the design of composite laminates with decent sound quality.

Funder

Doctoral Research Initiation Fund

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3