Study on the Utilization of Waste Thermoset Glass Fiber-Reinforced Polymer in Normal Strength Concrete and Controlled Low Strength Material

Author:

Li Yeou-Fong1ORCID,Hsu Yi-Wei1,Syu Jin-Yuan1,Chen Bian-Yu1,Song Bo2

Affiliation:

1. Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

2. Department of Civil Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Thermoset glass fiber-reinforced polymers (GFRP) have been widely used in manufacturing and construction for nearly half a century, but the large amount of waste produced by this material is difficult to dispose of. In an effort to address this issue, this research investigates the reuse of thermoset GFRP waste in normal strength concrete (NSC) and controlled low-strength materials (CLSM). The mechanical performance and workability of the resulting concrete were also evaluated. To prepare the concrete specimens, the thermoset GFRP waste was first pulverized into granular pieces, which were then mixed with cement, fly ash, and water to form cylindrical concrete specimens. The results showed that when the proportion of thermoset GFRP waste aggregate in the concrete increased, the compressive strengths of NSC and CLSM would decrease. However, when incorporating 5% GFRP waste into CLSM, the compressive strength was 7% higher than concrete without GFRP. However, the workability of CLSM could be improved to meet engineering standards by adding an appropriate amount of superplasticizer. This finding suggests that the use of various combinations of proportions in the mixture during production could allow for the production of CLSM with different compressive strength needs. In addition, the use of recycled thermoset GFRP waste as a new aggregate replacement for traditional aggregates in CLSM was found to be a more sustainable alternative to the current CLSM combinations used in the market.

Funder

Ministry of Science and Technology of Taiwan government

Ministry of Education in Taiwan

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3