An Analysis of the Influence of Surface Roughness and Clearance on the Dynamic Behavior of Deep Groove Ball Bearings Using Artificial Neural Networks

Author:

Knežević Ivan1ORCID,Rackov Milan1ORCID,Kanović Željko2ORCID,Buljević Anja2,Antić Aco3ORCID,Tica Milan4ORCID,Živković Aleksandar3ORCID

Affiliation:

1. Department of Mechanization and Design Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

2. Department of Computing and Control Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

3. Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

4. Department of Mechanics and Construction, Faculty of Mechanical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina

Abstract

The deep groove ball bearing is one of the most important components of the rotary motion system and is the research subject in this paper. After factory assembly, new ball bearings need to pass quality control. The conventional approach relies on measuring the vibration amplitudes for each unit and sorting them into classes according to the vibration level. In this paper, based on experimental research, models are created to predict the vibration class and analyze the dynamic behavior of new ball bearings. The models are based on artificial neural networks. A feedforward multilayer perceptron (MLP) was applied, and a backpropagation learning algorithm was used. A specific method of training groups of artificial neural networks was applied, where each network provided an answer to the input within the group, and the final answer was the mean value of the answers of all networks in the group. The models achieved a prediction accuracy of over 90%. The main aim of the research was to construct models that are able to predict the vibration class of a new ball bearing based on the geometric parameters of the bearing rings. The models are also applied to analyze the influence of surface roughness of the raceways and the internal radial clearance on bearing vibrations.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3