Elimination of Carbides in Carburized Layer of Stainless Steel/Carbon Steel by Horizontal Continuous Liquid–Solid Composite Casting

Author:

Sun Jihong123,Liu Xuefeng123,Yang Yaohua123,Wang Wenjing123,Wang Xin123ORCID,Zhang Weiliang123

Affiliation:

1. Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China

3. Key Laboratory for Advanced Materials Processing of Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The carbides in the carburized layer of stainless steel (SS)/carbon steel (CS) clad plates are prone to inducing intergranular cracks and reducing the interfacial bonding strength. In this paper, SS/CS clad plates were fabricated by horizontal continuous liquid–solid composite casting (HCLSCC), and the formation mechanism of the interfacial carbides and their effect on the elimination of carbides in the carburized layer were revealed by numerical simulation and thermodynamic calculations. During the HCLSCC process, the cladding interface encountered re-melting and re-solidification after rapid melting and solidification, resulting in liquid–liquid and solid–solid diffusion at the cladding interface, where the atomic ratio of Cr/C (Cr/C) gradually increased. Therefore, strip M7C3 and M23C6 carbides as well as blocky M23C6 carbides formed at the cladding interface in turn and had a coherent relationship with the matrix. The blocky M23C6 carbides led to an increase of 240% in the interfacial ferrite strength. The formation of interfacial carbides reduced the difference in C activity between the cladding interface and SS, thus preventing the diffusion of C to SS and inhibiting carbide precipitation in the carburized layer of SS, which was beneficial to improving the interfacial bonding strength.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3