Encapsulation of Silicon Nano Powders via Electrospinning as Lithium Ion Battery Anode Materials

Author:

Xiong Man12,Bie Xuan1,Dong Yawei1,Wang Ben1,Zhang Qunchao2,Xie Xuejun1,Liu Tong13ORCID,Huang Ronghua1

Affiliation:

1. School of Power & Mechanical Engineering, Wuhan University, Wuhan 430072, China

2. School of Materials Science and Engineering, Hubei University, Wuhan 430060, China

3. School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China

Abstract

Silicon-containing polyester from tetramethoxysilane, ethylene glycol, and o-Phthalic anhydride were used as encapsulating materials for silicon nano powders (SiNP) via electrospinning, with Polyacrylonitrile (PAN) as spinning additives. In the correct quantities, SiNP could be well encapsulated in nano fibers (200–400 nm) using scanning electron microscopy (SEM). The encapsulating materials were then carbonized to a Si-O-C material at 755 °C (Si@C-SiNF-5 and Si@C-SiNF-10, with different SiNP content). Fiber structure and SiNP crystalline structure were reserved even after high-temperature treatment, as SEM and X-ray diffraction (XRD) verified. When used as lithium ion battery (LIB) anode materials, the cycling stability of SiNPs increased after encapsulation. The capacity of SiNPs decreased to ~10 mAh/g within 30 cycles, while those from Si@C-SiNF-5 and Si@C-SiNF-10 remained over 500 mAh/g at the 30th cycle. We also found that adequate SiNP content is necessary for good encapsulation and better cycling stability. In the anode from Si@C-SiNF-10 in which SiNPs were not well encapsulated, fibers were broken and pulverized as SEM confirmed; thus, its cycling stability is poorer than that from Si@C-SiNF-5.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3