Ex Situ Study on the Co-Preparation of Pitch and Carbon Black from Petroleum Residue to Improve the Cost-Efficiency of the Pitch Synthesis Plant

Author:

Kim Ji-Hong1ORCID

Affiliation:

1. C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea

Abstract

This study aims to improve the economic efficiency of the pitch synthesis reaction on the pilot plant by optimizing the pitch synthesis reaction and utilization of the byproduct. The pitch was synthesized using a 150 L pilot plant with pyrolyzed fuel oil as a precursor. The pitch synthesis reaction is carried out through volatilization and polycondensation, which occur at 300 and 400 °C. Volatilization is terminated during heating; thus, additional soaking time is meaningless and reduces the process efficiency. Soaking time is a major variable when the synthesis temperature exceeds 400 °C. The byproduct is generated through volatilization; thus, its chemical characteristics are only influenced by the reaction temperature. The byproduct consists of various polycyclic aromatic hydrocarbons. The average molecular weight and yield of the byproduct increase with the reaction temperature. Carbon black was synthesized using chemical vapor deposition from the byproduct. The particle size of carbon black was controlled by the used precursor (byproduct), and the electrical conductivity of prepared carbon black has a maximum of 58.0 S/cm. Therefore, carbon black, which is synthesized from the byproduct of pitch synthesis, is expected to be used as a precursor for conductive material used in lithium-ion batteries or supercapacitors.

Funder

Ministry of Trade, Industrial & Energy

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3