Abstract
In this work, a finite element (FE) method is discussed for the 3D steady Navier–Stokes equations by using the finite element pair Xh×Mh. The method consists of transmitting the finite element solution (uh,ph) of the 3D steady Navier–Stokes equations into the finite element solution pairs (uhn,phn) based on the finite element space pair Xh×Mh of the 3D steady linearized Navier–Stokes equations by using the Stokes, Newton and Oseen iterative methods, where the finite element space pair Xh×Mh satisfies the discrete inf-sup condition in a 3D domain Ω. Here, we present the weak formulations of the FE method for solving the 3D steady Stokes, Newton and Oseen iterative equations, provide the existence and uniqueness of the FE solution (uhn,phn) of the 3D steady Stokes, Newton and Oseen iterative equations, and deduce the convergence with respect to (σ,h) of the FE solution (uhn,phn) to the exact solution (u,p) of the 3D steady Navier–Stokes equations in the H1−L2 norm. Finally, we also give the convergence order with respect to (σ,h) of the FE velocity uhn to the exact velocity u of the 3D steady Navier–Stokes equations in the L2 norm.
Subject
General Physics and Astronomy
Reference41 articles.
1. Navier-Stokes Equations, Theory and Numerical Analysis;Temam,1984
2. Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms;Girault,1986
3. Numerical Approximation of Partial Differential Equations;Quarteroni,1997
4. Finite element methods for incompressible viscous flow;Glowinski,2003
5. Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics;Elman,2005
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献