Author:
Meng Chengcheng,Zhang Huilan,Wang Yujie,Wang Yunqi,Li Jian,Li Ming
Abstract
Attribution analyses on streamflow variation to changing climate and land surface characteristics are critical in studies of watershed hydrology. However, attribution results may differ greatly on different spatial and temporal scales, which has not been extensively studied previously. This study aims to investigate the spatial-temporal contributions of climate change and underlying surface variation to streamflow alteration using Budyko framework. Jiangling River Watershed (JRW), a typical landform transitional watershed in Southwest China, was chosen as the study area. The watershed was firstly divided into eight sub-basins by hydrologic stations, and hydrometeorological series (1954–2015) were divided into sub-intervals to discriminate spatial-temporal features. The results showed that long-term tendencies of hydrometeorological variables, i.e., precipitation (P), potential evapotranspiration (E0), and runoff depth (R), exhibited clear spatial patterns, which were highly related to topographic characteristics. Additionally, sensitivity analysis, which interpreted the effect of one driving factor by unit change, showed that climate factors P and E0, and catchment characteristics (land surface parameter n) played positive, negative, and negative roles in R, according to elastic coefficients (ε), respectively. The spatial distribution of ε illustrated a greater sensitivity and heterogeneity in the plateau and semi-humid regions (upstream). Moreover, the results from attribution analysis showed that the contribution of the land surface factor accounted for approximately 80% of the R change for the entire JRW, with an obvious spatial variation. Furthermore, tendencies of the contribution rates demonstrated regulations across different sub-regions: a decreasing trend of land surface impacts in trunk stream regions and increasing tendencies in tributary regions, and vice versa for climate impacts. Overall, both hydrometeorological variables and contributions of influencing factors presented regularities in long-term tendencies across different sub-regions. More particularly, the impact of the primary influencing factor on all sub-basins exhibited a decreasing trend over time. The evidence that climate and land surface change act on streamflow in a synergistic way, would complicate the attribution analysis and bring a new challenge to attribution analysis.
Funder
National Natural Science Foundation of China
Analysis on Runoff-Sediment Variation and Tendency in the Future of Three Gorges Reservoir
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献