Abstract
Imines are fundamental organic compounds used as synthetic intermediates and as ligands in coordination chemistry. They are also found to be important pharmacophores in various bioactive compounds. In this report, two Schiff bases were prepared using the traditional condensation of 4-pyridinecarboxaldehyde with 2-thiophenemethylamine and 2-quinolinecarboxaldehyde with furfurylamine to form (E)-1-(pyridin-4-yl)-N-(thiophen-2-ylmethyl)methanimine (L1) and (E)-N-(furan-2-ylmethyl)-1-(quinolin-2-yl)methanimine (L2) respectively. L1 and L2 were complexed with silver perchlorate in 2:1 [M:L] stoichiometry to obtain complexes 1 and 2, respectively. The crystal structures of 1 and 2 were unequivocally determined by single-crystal X-ray diffraction analysis. The resulting structures revealed 2 to be a four-coordinate as expected. In contrast, an unexpected chemoselective hydrolytic cleavage of one mole of the (CH=N) imine ligands occurred in complex 2 and, further, the amines (thiophenemethylamine) homo-coupled to form a new imine ligand derivative in situ (L1a) before coordinating to the Ag(I) center along with L1. This observation described an alternative synthetic route to be explored to synthesize a diverse range of imine derivatives, which involves the Ag(I)-promoted homo-coupling of amines. Herein, the crystal structures of Ag(I) complexes of pyridinyl [Ag(L1)(L1a)]ClO4 (1) and quinolinyl [Ag(L2)2]ClO4 (2) Schiff bases are presented.
Funder
National Research Foundation of South Africa
Subject
Organic Chemistry,Physical and Theoretical Chemistry,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献