Artificial Intelligence Techniques Used to Extract Relevant Information from Complex Social Networks

Author:

Paramés-Estévez Santiago12ORCID,Carballosa Alejandro12ORCID,Garcia-Selfa David123ORCID,Munuzuri Alberto12ORCID

Affiliation:

1. Group of NonLinear Physics, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain

2. Galician Center for Mathematical Research and Technology (CITMAga), 15782 Santiago de Compostela, Spain

3. CESGA (Supercomputing Center of Galicia), Avda. de Vigo s/n, 15705 Santiago de Compostela, Spain

Abstract

Social networks constitute an almost endless source of social behavior information. In fact, sometimes the amount of information is so large that the task to extract meaningful information becomes impossible due to temporal constrictions. We developed an artificial-intelligence-based method that reduces the calculation time several orders of magnitude when conveniently trained. We exemplify the problem by extracting data freely available in a commonly used social network, Twitter, building up a complex network that describes the online activity patterns of society. These networks are composed of a huge number of nodes and an even larger number of connections, making extremely difficult to extract meaningful data that summarizes and/or describes behaviors. Each network is then rendered into an image and later analyzed using an AI method based on Convolutional Neural Networks to extract the structural information.

Funder

Spanish Ministerio de Economía y Competitividad

Xunta de Galicia

FEDER

Supercomputer Center of Galicia

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference39 articles.

1. Life in the network: The coming age of computational social science;Lazer;Science,2009

2. Russell, M.A. (2011). Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites, O’Reilly Media, Inc.

3. Critical Questions for Big Data;Boyd;Inf. Commun. Soc.,2012

4. A tale of two sites: Twitter vs. Facebook and the personality predictors of social media usage;Hughes;Comput. Hum. Behav.,2012

5. Technology acceptance model (TAM) and social media usage: An empirical study on Facebook;Rauniar;J. Enterp. Inf. Manag.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3