Analysis and Visualization of Production Bottlenecks as Part of a Digital Twin in Industrial IoT

Author:

Arff Benjamin1,Haasis Julian1ORCID,Thomas Jochen2,Bonenberger Christopher1ORCID,Höpken Wolfram1ORCID,Stetter Ralf3ORCID

Affiliation:

1. Department of Electrical Engineering, Ravensburg-Weingarten University (RWU), 88250 Weingarten, Germany

2. FORCAM GmbH, 88214 Ravensburg, Germany

3. Department of Mechanical Engineering, Ravensburg-Weingarten University (RWU), 88250 Weingarten, Germany

Abstract

In the area of industrial Internet of Things (IIoT), digital twins (DTs) are a powerful means for process improvement. In this paper the concept of a DT is explained and analysis possibilities throughout the life-cycle of a product and its production system are explored. The main part of this paper is focused on an approach to the analysis of manufacturing layouts and their parameters. The approach, which is based on a state of the art bottleneck detection method, allows an intelligent representation of the temporal process characteristics. The presented method is widely applicable for any type of manufacturing layout and time-span. The use of elementary heuristics leads to traceable results that can be used for further analysis or optimization. The results of this analysis method can be integrated in a DT and combined with machine learning and explainable artificial intelligence (XAI). The concept for a self-learning DT is explained and implementation possibilities are elucidated.

Funder

Carl Zeiss Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3