A Study on the Super Resolution Combining Spatial Attention and Channel Attention

Author:

Lee Dongwoo1ORCID,Jang Kyeongseok1ORCID,Cho Soo Young2,Lee Seunghyun3ORCID,Son Kwangchul2ORCID

Affiliation:

1. Department of Plasma Bio Display, Kwangwoon University, 20 Gwangun-ro, Nowon-gu, Seoul 01897, Republic of Korea

2. Department of Information Contents, Kwangwoon University, 20 Gwangun-ro, Nowon-gu, Seoul 01897, Republic of Korea

3. Ingenium College, Kwangwoon University, 20 Gwangun-ro, Nowon-gu, Seoul 01897, Republic of Korea

Abstract

Existing CNN-based super resolution methods have low emphasis on high-frequency features, resulting in poor performance for contours and textures. To solve this problem, this paper proposes single image super resolution using an attention mechanism that emphasizes high-frequency features and a feature extraction process with different depths. In order to emphasize the high-frequency features of the channel and space, it is composed of CSBlock that combines channel attention and spatial attention. Attention block using 10 CSBlocks was used for high-frequency feature extraction. In order to extract various features with different degrees of feature emphasis from insufficient low-resolution features, features were extracted from structures connected with different numbers of attention blocks. The extracted features were expanded through sub-pixel convolution to create super resolution images, and learning was performed through L1 loss. Compared to the existing deep learning method, it showed improved results in several high-frequency features such as small object outlines and line patterns. In PSNR and SSIM, it showed about 11% to 26% improvement over the existing Bicubic interpolation and about 1 to 2% improvement over VDSR and EDSR.

Funder

Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government

Research and development of realistic content device technology); the Ministry of Culture, Sports and Tourism; and the Korea Creative Content Agency

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3