Experimental Investigation on Shear Behavior of Dune Sand Reinforced Concrete Deep Beams

Author:

Guo Zheyi12,Qin Yongjun12ORCID,Zhang Yifei12,Li Xiangyang1

Affiliation:

1. School of Civil Engineering and Architecture, Xinjiang University, Urumqi 830047, China

2. Xin Jiang Key Laboratory of Building Structure and Earthquake Resistance, Xinjiang University, Urumqi 830047, China

Abstract

An experimental study on the shear behavior of dune sand reinforced concrete (DSRC) deep beams was conducted to determine the feasibility of using dune sand (DS) in engineering. Nine DSRC deep beams were designed and thoroughly analyzed for failure modes, diagonal cracks, and load–deflection curves in this study. The results showed that the shear strength and ductility of DSRC deep beams increased when the DS replacement rate was 30%, but the opposite effect occurred when the DS replacement rate was 50%. To analyze the differences in the effects of the DS replacement rate, shear span-to-depth ratio, concrete strength, and stirrup ratio on the shear strength of DSRC and normal reinforced concrete (NRC) deep beams, a total of 227 shear experimental tests of NRC deep beams were conducted. Furthermore, four national codes were evaluated and compared based on experimental data. The evaluation results showed that the four codes underestimated the shear strength of DSRC and NRC deep beams. Among them, ACI 318–11 provided more reliable predictions for both NRC and DSRC deep beams. It is in this regard that a new empirical model for predicting the shear strength of DSRC deep beams is proposed, in which a reduction coefficient of the DS replacement rate is incorporated. The verification results indicates that the predicted results of the proposed model are in good agreement with the experimental results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3