Microstructure and Fracture Behaviors of Oscillating Laser Welded 5A06 Aluminum Alloy Lock Butt Joint

Author:

Lu Yang1,Lai Jian2,Pang Junping2,Li Xin1,Zhang Chen3,Gao Ming1

Affiliation:

1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

2. Hangzhou Dongcheng Electronic, Hangzhou 310009, China

3. The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China

Abstract

Oscillating laser welding is potential to improve the quality of aluminum alloy joints, but has been seldom addressed on lock butt joint. In this paper, the effects of beam oscillation frequencies (f) on the properties of laser-welded 5A06 aluminum alloy lock butt joints were investigated, especially those at the lock step. In the microstructure, the columnar grain zone (CGZ) near the fusion line narrowed, the porosity was reduced, and the angle between lock step and fusion line increased with the increase of f. Correspondingly, the fracture changed from equiaxed grain zone to heat affected zone (HAZ), and the fracture angle between lock step and crack propagation line from 90° to 45°. The maximum ultimate tensile strength and elongation of oscillating weld reached 308 MPa and 18.2%, respectively, 36.3% and 203.3% higher than non-oscillating weld. The fracture behaviors indicated that the crack always initiated at the lock step, and then preferably propagated to the pores, followed closely by the weaker CGZ, and then the stronger HAZ when CGZ was narrowed enough. Notably, when the pore size was small (<0.39 mm) and located below the lock step, the pore was not on the crack propagation path. The crack tended to propagate towards the weaker CGZ. Finally, the fracture mechanism was discussed. The results clarify the fracture mechanism of oscillating laser-welded lock butt joints and contribute to the development of oscillating laser welding.

Funder

National Natural Science Foundation of China

Aviation Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3