A Method of Aerial Multi-Modal Image Registration for a Low-Visibility Approach Based on Virtual Reality Fusion

Author:

Wu Yuezhou1ORCID,Liu Changjiang2ORCID

Affiliation:

1. School of Computer Science, Civil Aviation Flight University of China, Guanghan 618307, China

2. Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, Sichuan University of Sciencce and Engineering, Zigong 643000, China

Abstract

Aiming at the approach and landing of an aircraft under low visibility, this paper studies the use of an infrared heat-transfer imaging camera and visible-light camera to obtain dynamic hyperspectral images of flight approach scenes from the perspective of enhancing pilot vision. Aiming at the problems of affine deformation, difficulty in extracting similar geometric features, thermal shadows, light shadows, and other issues in heterogenous infrared and visible-light image registration, a multi-modal image registration method based on RoI driving in a virtual scene, RoI feature extraction, and virtual-reality-fusion-based contour angle orientation is proposed, and this could reduce the area to be registered, reduces the amount of computation, and improves the real-time registration accuracy. Aiming at the differences in multi-modal image fusion in terms of resolution, contrast, color channel, color information strength, and other aspects, the contour angle orientation maintains the geometric deformation of multi-source images well, and the virtual reality fusion technology effectively deletes incorrectly matched point pairs. By integrating redundant information and complementary information from multi-modal images, the visual perception abilities of pilots during the approach process are enhanced as a whole.

Funder

National Key R&D Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3