Affiliation:
1. Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
Abstract
A new type of connection has been developed for steel-braced frame systems that allows the brace members to undergo compression buckling in the in-plane direction. In addition to the inherent benefits of in-plane buckling (IPB) braces that help in reducing the extent of damage to the non-structural components, the IPB brace system is also considered to be an efficient way of retrofitting existing seismically deficient structures. The use of the compact and thicker gusset plate prevents the distortion of the free edges and the additional torsional force demand on beams and columns. However, IPB braced frame systems are not frequently used in practice, primarily due to the absence of limit state design criteria. As a result, some prominent failure modes observed in IPB frame systems are out-of-plane brace buckling, yielding of gusset plates, interface weld failure, and fracturing of knife plates. Recent studies on the IPB braced system have resolved some of these problems, such as design criteria being developed to prevent OOPB (out-of-plane buckling) of the IPB braced system. Other challenges need to be studied to achieve reliable performance of the braced frame system. This study focuses on recent advances and potential areas of improvement to achieve an efficient IPB braced system in highly seismic areas.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference55 articles.
1. MacRae, G.A., Clifton, G.C., Bruneau, M., Kanvinde, A., and Gardiner, S. (2015, January 1–3). Lessons from Steel Structures in Christchurch Earthquakes. Proceedings of the 8th International Conference on Behavior of Steel Structures in Seismic Areas, Shanghai, China.
2. Steel Structures Damage from the Christchurch Earthquake Series of 2010 and 2011;Clifton;Bull. New Zeal. Soc. Earthq. Eng.,2011
3. Classification of Damage to Steel Buildings Observed in the 1995 Hyogoken-Nanbu Earthquake;Nakashima;Eng. Struct.,1998
4. Collapse Behavior of Pino Suarez Building during 1985 Mexico City Earthquake;Ger;J. Struct. Eng.,1993
5. Performance of Steel Structures during the 1994 Northridge Earthquake;Tremblay;Can. J. Civ. Eng.,1995
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献