Radial and Oblique Impact Testing of Alpine Helmets onto Snow Surfaces

Author:

Patton Declan A.1234,Mohammadi Reza5,Halldin Peter5,Kleiven Svein5ORCID,McIntosh Andrew S.16

Affiliation:

1. Australian Collaboration for Research into the Injury in Sport and Its Prevention (ACRISP), Federation University Australia, Ballarat, VIC 3350, Australia

2. Oslo Sports Trauma Research Center (OSTRC), Norwegian School of Sport Sciences, 0863 Oslo, Norway

3. Sport Injury Prevention Research Center (SIPRC), Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada

4. Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA

5. Division of Neuronic Engineering, KTH—Royal Institute of Technology, 11428 Stockholm, Sweden

6. McIntosh Consultancy & Research, Sydney, NSW 2090, Australia

Abstract

Recent studies have found that alpine helmets reduce the risk of focal injuries associated with radial impacts, which is likely due to current alpine helmet standards requiring helmets to be drop-tested on flat anvils with only linear acceleration pass criteria. There is a need to evaluate the performance of alpine helmets in more realistic impacts. The current study developed a method to assess the performance of alpine helmets for radial and oblique impacts on snow surfaces in a laboratory setting. Snow samples were collected from a groomed area of a ski slope. Radial impacts were performed as drop tests onto a stationary snow sample. Oblique impacts were performed as drop tests onto a snow sample moving horizontally. For radial impacts, snow sample collection time was found to significantly (p = 0.005) influence mean peak linear headform acceleration with an increase in ambient temperature softening the snow samples. For oblique tests, the recreational alpine sports helmet with a rotation-damping system (RDS) significantly (p = 0.002) reduced mean peak angular acceleration compared to the same helmets with no RDS by approximately 44%. The ski racing helmet also significantly (p = 0.006) reduced mean peak angular acceleration compared to the recreational alpine sports helmet with no RDS by approximately 33%, which was attributed to the smooth outer shell of the ski racing helmet. The current study helps to bridge the knowledge gap between real helmet impacts on alpine snow slopes and laboratory helmet impacts on rigid surfaces.

Funder

Endeavour Research Fellowship from the Australian Government

Tillväxtverket

Marie-Curie Grant Agreement

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3