Experimental Research of the Initial Temperature and Additives Effect on the Ignition and Combustion Mechanisms of Composite Liquid Fuel in a High-Temperature Oxidizer

Author:

Glushkov Dmitrii1ORCID,Klepikov Dmitrii1,Nigay Aleksandr1,Paushkina Kristina1ORCID,Pleshko Andrei1ORCID

Affiliation:

1. Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia

Abstract

Composite fuel is a promising energy source that allows for solving the problems of waste disposal with energy generation. Such fuel is the most accessible fuel and is cheap in comparison with fossil fuels widely used in industrial thermal power engineering. This paper presents the results of experimental studies on the effect of the initial temperature and the addition of combustible liquids and solid components on the ignition characteristics of composite fuel single droplets. Composite liquid fuels were prepared using the main components: bituminous coal, coal processing waste (filter cake), rapeseed oil, turbine oil, and water. The research was carried out for fuel droplets with an initial temperature from −60 to +60 and an ambient temperature from 700 to 1000 °C. The differences in the ignition delay times at conditions close to the limiting ones were 2–3.5 times. A promising direction for intensifying the processes of the ignition and combustion of composite liquid fuels under relatively intense heating is self-grinding into a large number of small fragments up to complete disintegration due to the dispersion effect. It has been experimentally found that the addition of highly flammable liquids (gasoline, kerosene, diesel fuel, formic acid) to the fuel composition in an amount of 5% is characterized by an intensification of ignition and burnout of droplets by about two times. The ignition delay time is reduced by 20–40%, while the size of the dispersion area is increased by 20–70%. The addition of formic acid to the composite fuel has a positive effect on the main ignition characteristics from 5 to 50%, and the addition of a similar amount of diesel fuel by 20–64%.

Funder

Tomsk Polytechnic University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3