Securing Network Information System Design: An Efficient Tool for DSP Undocumented Instruction Mining

Author:

Zhang Xingcan1,Chen Zhe1,Ye Jiawen1,Li Huan1,Wang Jian1,Liu Changlong2,Li Bin2

Affiliation:

1. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

2. The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China

Abstract

As recently studied, the undocumented instructions in embedded processors that may cause catastrophic results for devices have become one of the main threats to system security. To tackle this issue, in this paper, we propose an undocumented instruction mining tool for digital signal processors named DSPUIM that can find out the undocumented instructions from the frequently used Digital Signal Processors (DSP) in network information systems. First, we analyzed the characteristics of the DSP instruction format to compress the instruction search space and improve the instruction search speed. Second, according to the public instruction set of DSPs, we built an instruction disassembly framework that helped us to identify all the undefined instructions. Finally, by testing the executability of undefined instructions automatically, we obtained the undocumented instructions for target DSPs. To demonstrate the effectiveness of our tool, we applied it on ten DSP processors of Texas Instruments (TI) and mined 335 undocumented instructions from them within 5 min. Some undocumented instructions have malicious functions, such as changing registers and denial of service, posing a security threat to the network devices using DSPs.

Funder

the Key Research and Development Program of Sichuan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3