Regret and Hope on Transformers: An Analysis of Transformers on Regret and Hope Speech Detection Datasets

Author:

Sidorov Grigori1,Balouchzahi Fazlourrahman1ORCID,Butt Sabur1ORCID,Gelbukh Alexander1ORCID

Affiliation:

1. Centro de Investigación en Computación (CIC), Instituto Politécnico Nacional (IPN), Mexico City 07738, Mexico

Abstract

In this paper, we analyzed the performance of different transformer models for regret and hope speech detection on two novel datasets. For the regret detection task, we compared the averaged macro-scores of the transformer models to the previous state-of-the-art results. We found that the transformer models outperformed the previous approaches. Specifically, the roberta-based model achieved the highest averaged macro F1-score of 0.83, beating the previous state-of-the-art score of 0.76. For the hope speech detection task, the bert-based, uncased model achieved the highest averaged-macro F1-score of 0.72 among the transformer models. However, the specific performance of each model varied slightly depending on the task and dataset. Our findings highlight the effectiveness of transformer models for hope speech and regret detection tasks, and the importance of considering the effects of context, specific transformer architectures, and pre-training on their performance.

Funder

Mexican Government

Secretaría de Investigación y Posgrado of the Instituto Politecnico Nacional, Mexico

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3